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Synopsis 
A method of data int.eqxetation known as nonlinear least squares has recently been 

applied by several anthors to the study of polymeric materials. Nagler has used a modi- 
fied method proposed by Blizzard and Jirka and has concluded that the method is im- 
practical because it requires excessive computer time. It is shown that the difficulties 
Nagler encountered are inherent in Blizzard and Jirka’s method, biit not in the basic 
method. Three steps are outlined to minimize computer time, and a summary of suc- 
cessful applications is presented. 

Introduction 

In  a recent article,’ Xagler has applied a nonlinear least-squares tech- 
nique to the determination of temperature-variable thermal conductivities. 
Unfortunately, new techniques proposed by Blizzard and Jirka2 in an ap- 
pendix to Nagler’s article have led Nagler to believe that the least-squares 
technique is impractical for a two-parameter problem because of the ex- 
cessive amount of computer time required. The present author, through 
the correct application of nonlinear least squares, has solved successfully a 
seven parameter problem describing internal ablation mechanisms in a 
polymeric material. The purpose of this note is to summarize what the 
author believes to be the correct techniques for applying nonlinear least 
squares and to indicate the difficulties in the method presented by Blizzard 
and Jirka.2 

Theory 

It is useful to present first the classical manner in which the method of 
least squares has been applied to nonlinear problems. This derivation is 
attributed to Gauss. The notation is similar to  that of Blizzard and Jirka,2 
but a more general problem is considered. We consider a problem in which 
experimental values of temperature, 7 ,  have been measured during a tran- 
sient experiment by n, temperature sensors a t  n, discrete times. Thus the 
dependent variable T has been measured a t  n = n, X n,  pairs of values of 
the two independent variables, 2 (distance) and t (time) ; symbolically 
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rt = 7 ( X i , ~ i )  i = 1, 2,  . ., 12 (1) 

The purpose of the experiment is to determine the magnitude of q param- 
eters, P I ,  pz,  . . . , p, .  The parameters are quantities such as thermal con- 
ductivities, specific heats, heats of decomposition, and decomposition rate 
constants. 

A theoretical model has been hypothesized to describe the experiment. 
This model, which may be a differential equation as in reference 2, expresses 
the functional dependence of the dependent variable, v (temperature), 
upon the independent variables, x and t ,  and the q parameters, pl, pz ,  
. . . , p , ,  that appear in the model; symbolically, the solution to this model 
may be expressed as 

( 2 )  

(2') 

v = v o ,  t; PI, P2, . ' ., PP) 

vi = V ( X i ,  4; Pl ,  pz,  * . . , P,) 
and 

It is assumed throughout this communication that eqs. ( 2 )  and (2') represent 
solutions obtained by numerical methods on a high-speed digital computer. 

Nonlinear least squares determines the set of the parameters, p l ,  p,, 
. . . ,  p ,  (which may be represented by a vector, P), which minimizes in 
the least-squares sense the difference between experimental and theoretical 
temperatures. Mathematically i t  is desired to minimize 

The value of any variable a t  this minimum is denoted by a bar ( p ,  P, fl). 
The least-squares function is related directly to the root-mean-square 
(rms) temperature difference between experimental and theoretical tem- 
peratures. 

vr,,s = (F/n)"t  (4) 

If a minimum of F exists, then 

or 

The usual iterative method, attributed to Gauss, for solving eq. (6), is 
to linearize the equation by expanding vt in a first-order Taylor series with 
the parameters as the independent variables in the expansion. vf is ex- 
panded about the point vim (the value of the vi a t  the mth iteration) to 
obtain an improved estimation of a,, namely, vtm + 
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In  this expansion (p," + - p , " )  (the change in parameter j a t  the inth 
iteration) is an iteration parameter for which an optimum value is sought, 
and p," (the value of parameter j a t  the mth iteration) may be regarded as 
a fixed constant. The property derivatives at P in eq. (6) are approximated 
by their value a t  the inth iteration. 

(8) 

The so-called "tiorma1 equations" are derived from eqs. ( O ) ,  (7), and 
(8) ; 

b p k , P = P  -I = -  ~ p k ' P = P ~ ? L  dpk ( t ;  m)  

x 2 ]k = 1, 2, . , ' . , p (9) 
i = 1 bp j  (i; m) bpk (i; m) 

Equation (9) is identical in form to eq. (A-9) of reference 2 except for minor 
changes in notation to make the equation more general. The only essen- 
tial difference in the present derivation from that of Blizzard and Jirka2 
is the point in the derivation a t  which f j i  is expanded in a Taylor series. 
The linear form of eq. (9) may be more clearly exhibited through the use of 
matrix notation; letting 

aud defining the three matrices 



1114 R. C. YFAHL. JH. 

eq. (9) becomes 

A"(p" + 1 - p") = B" 

p" + 1 = p" + (A")-lB" 

(13) 

(14) 

or 

Equation (14) is a linear equation for P" + which is readily solved by any 
of several methods once the elements of A" and B" have been computed. 

The computation of these elements requires the determination of the 
parameter derivatives dv/dpkl(i; m). These derivatives cannot be com- 
puted directly since ~ ( 5 ,  t ,  PI, pz ,  . . . , p,) represents the numerical solution 
to a set of differential equations. The customary method of computing 
the parameter derivatives (as opposed to the new method proposed by 
Blizzard and Jirka2) is to approximate the derivatives by finite differ- 
ences. 

where t is a small number. Therefore, to solve for the elements of the 
matrices A" and B" of eq. (14), it is necessary to solve eq. (2) q + 1 times: 
first a t  P" and then varying each parameter a small amount in succession. 

The iterative procedure represented by eq. (14) is normally continued 
until (P" + - P"I 5 6, where 6 is an arbitrary small number. 

Methods of Reducing the Number of Calculations 

Since the solution of the mathematical model represented by eq. (2) 
requires the use of time-consuming numerical methods, if steps are not 
taken to insure rapid convergence, the method may become impractical. 
Naglerl was discouraged as to the future for nonlinear least squares because 
of the inherently slow convergence of the computational method proposed 
by Blizzard and Jirka.2 There are three steps that should be taken to 
speed convergence to P and to minimize computer time. (Although space 
does not permit the discussion of these steps in detail, references to detailed 
discussions are indicated.) 

(1) Calculations may be reduced by careful selection of the initial esti- 
mate of the parameter vector P.3 

(2) Calculations may be reduced by using modified forms of the Gauss 
method of nonlinear least squares to speed convergence. These modified 
forms include an interpolative m e t h ~ d , ~  an hybrid Gauss-steepest descent 
method proposed by i l larq~ardt ,~ and a class of methods based upon the 
assumption that the A" matrix in eq. (14) does not vary greatly during 
succeeding iterations.'j 

(3) Calculations may be reduced by careful design of the experiment. 
Not only is careful design necessary to reduce calculations and to improve 
accuracy, but also without careful design it is, in many cases, completely 
impossible to determine simultaneously all of the desired parameters. 
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A carefully designed experiment is one in which there is a minimum of 
correlation between the parameters. Box and Lucas presented one of the 
first discussions of nonlinear design.’ Beck has performed extensive studies 
on the optimum experimental design for the simultaneous determination of 
thermal conductivity and specific heat.8-10 One point to be gained from 
these investigations for our immediate use is that an optimum experiment 
is one in which the temperatures are measured at  “points a t  which the 
[parameter] derivatives are large in absolute value, but also, SO far as 
possible, uncorrelated.”7 

Applications 
Xonlinear least squares has been applied successfully for property deter- 

mination in a variety of problems. Marquardt e t  al.” have used the 
method for an electron paramagnetic resonance spectra problem. Kit- 
trell, llezaki, and Watson3 have applied nonlinear least squares to deter- 
mining adsorption rate constants. They have determined up to six pa- 
rameters simultaneously. Booth and Peterson4 present an example involv- 
ing two chemical reactions in which they determine two reaction rate con- 
stants. 

Beck8-l0 has denionstrated i n  numerous problems the ability of nonlinear 
least squares to determine two parameters from one experiment. His 
work has been concerned with the simultaneous determination of thermal 
conductivity and specific heat and with the determination of two param- 
eters describing a linearly temperature dependent conductivity (the same 
problem treated by Nagler) . 

The present author has utilized nonlinear least squares to attack the 
same problem as Nagler, that of determining the internal behavior of a 
charring ablator.I2 A niodel of ablation was hypothesized in which a virgin 
material with temperature-independent properties underwent an endo- 
thermic reaction a t  a constant temperature to form a char niatrix and a 
transpiring gas, both with temperature-independent properties. This 
thermal model involved seven thermal paranieters ; the conductivity of 
the virgin material, the specific heat of the virgin material, the temperature 
of decomposition, the enthalpy of decomposition, the conductivity of the 
char layer, the specific heat of the char layer, and the specific heat of the 
gas phase. An hypothetical experiment using four thermocouples was de- 
signed following criterion established by Beck;’ in reference 12, a sample 
calculation demonstrates that from this one transient experiment all seven 
parameters can be determined. The calculations were started approx- 
imately 10% from the correct parameter values, and the method converged 
within O . O l ~ o  of the true values in six iterations. Experiments were con- 
ducted on a cork-phenolic material to determine the seven parameters. 
The least-squares analysis revealed that the hypothesized model was not 
adequate for describing the behavior of charring cork. 

The author currently is extending this earlier work to polymeric materials 
described more accurately by the hypothesized model. In addition, stud- 
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ies are being conducted to determine the feasibility of using the nonlinear 
least-squares method in a more general model involving 16 parameters nd 
including surface as well as internal ablation mechanisms. 

Discussion of the Method Proposed by Blizzard and Jirka 

Blizzard and Jirka in their appendix have attempted to derive a new 
technique for determining the parameter derivatives bv/bp,[  (i; ,,&) of eq. (9), 
but unfortunately they have neglected several terms. They consider 
one-dimensional heat conduction with temperature-variable properties. 
The temperature-variable thermal conductivity is 

k(v)  = ko + bv (16) 

Thus, for their problem, the parameter vector, P = (/co,b). The one- 
dimensional heat conduction equation is 

dv - - - -- 1 b - ( k ( v )  E) = l b  -( (ko + bv) ") (17) bt pc,(v) b x  P C P W  a x  b X  

where pcp(v)  is the temperature-dependent volumetric specific heat. 

bv/bkol (i,.m) and bv/bbI(i;m) by computing 
Blizzard and Jirka attempt to compute the parameter derivatives 

and 

These two equations require that v(x ,  t;  ko, b )  and its derivatives are contin- 
uous a t  (i; m). Substitution of eq. (17) into eqs. (18a) and (18b) yields 
eqs. (19a) and (19b), respectively, in which the terms in brackets are neg- 
lected by Blizzard and Jirka. 
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The additional terms occur because v and its partial derivatives are func- 
tions of ko and b,  as well as of x and t. 

If the terms in brackets are neglected, eqs. (19a) and (19b) may be inte- 
grated with respect to time by finite differences to obtain the parameter 
derivatives d ~ / d k ~ l ( ~ ;  m) and bv/bbl( i ;  m). However, if the terms cannot 
be neglected, Blizzard and Jirka’s procedure has not served to calculate the 
derivatives with respect to the parameters, but rather to introduce addi- 
tional derivatives which must be calculated. The terms in brackets can 
be neglected if the parameter derivatives and mixed parameter derivatives 
are small. The experiment can be designed to make these derivatives 
small, but such a design leads to a paradox because the design contradicts 
Box’s criterion that the parameter derivatives be large for an optimum ex- 
periment. 

Since Naglerl did not present his temperature data, it is impossible to 
determine the importance of the neglected terms in his computations. Re- 
gardless of the magnitude of the terms, Nagler’s calculations will converge 
slowly, if at  all. If the terms are small, the experiment is designed poorly 
for convergence, while if the terms are large, they cannot be neglected with- 
out causing errors in the computations. 

The present author has analyzed, by the conventional least-squares 
method, the data from two experiments similar to Nagler’s. These two 
experiments do not represent optimum experimental designs. For these 
two experiments the importance of the neglected terms was estimated by 
forming the ratio of one of the neglected terms to one of the included terms 
in both eqs. (19a) and (19b). 

These particular ratios were selected because they involve only the param- 
eter values, the temperatures, and the simple parameter derivatives. All 
of this information is available from the conventional least-squares calcu- 
lations. RI and Rz both depend on i and m. For the author’s two experi- 
ments the ratios were found to change strongly from one iteration to the 
next, increasing as the iterative procedure approached the solution. In 
one experiment both IRl(i; l)! and IRz(i; 1)1 < 0.04, while at  the second 
iteration IRl(i; 2)lm., = 1-0.49( and IR2(i; 2)Imax = 1-0.651. For the 
second experiment at one point ’Rp = -0.78. Thus, for these two experi- 
ments, the magnitudes of some of the individual terms neglected by Bliz- 
zard and Jirka are of the same order as the included terms. (However, it 
is still conceivable, but unlikely, that the sum of all of the neglected terms 
could be fortuitously zero.) Furthermore, these neglected terms become 
more significant as the solution is approached. 
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The present author’s experiments also revealed that bv/dkol ( i ;  m) and 
bv/db(Ci; m) were highly correlated. Beck,lo unaware of the neglected 
terms in Blizzard and Jirka’s procedure, concluded that high correlation 
caused by a nonoptimum least-squares design was probably responsible for 
the slow convergence in reference 1. One method of eliminating correla- 
tion is to transform the parameters. Becklo has proposed an extremely 
valuable redefinition of eq. (13). 

(v - v1) 

(v2 - Vl) 
k(v)  = ICl + (k2 - k,) -- 

and 
P = (kl, k2) 

kl is the conductivity at  v1, and k2 is the conductivity at  v2. v1 and v2 may 
be chosen to aid in the experimental design. Beck has suggested v1 be 
the lowest temperature arid v2 the highest temperature in the model. 

The present author found that when this transformation of parameters 
was applied to his two experiments, it dramatically reduced the correlation 
and improved the convergence of the method. By using the conventional 
method of solving nonlinear least-squares problems, convergence was ob- 
tained in only three iterations when eq. (16’) was used instead of eq. (16). 
Modifying the calculation procedure by the method outlined in reference 6 
further reduced the computations by approximately 30%. Nagler, using 
Blizzard and Jirka’s method, was unable to obtain convergence in ten iter- 
ations. 

Summary 
The nonlinear least-squares procedure proposed by Blizzard and Jirka 

is inherently unsuitable because any attempt to design the experiment to 
minimize the neglected parameter derivatives contradicts the basic cri- 
terion for an optimum experiment. The conventional nonlinear least- 
squares procedure has been presented and three steps outlined for opti- 
mizing the effectiveness of this method. A summary of successful applica- 
tions of nonlinear least squares has been presented. One application was 
the simultaneous determination, from one transient experiment, of seven 
thermal properties describing the internal ablation mechanisms of a poly- 
meric material. These successful applications serve to indicate the broad 
scope of possible uses of nonlinear least squares. 

The author wishes to acknowledge the support of the Air Force Materials Laboratory, 
Research and Technology Division, Air Force Systems Command, U. S. Air Force, under 
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Ri5SUlll6 
Uiie m6thode d’interprktation de rksultats connue comme mkthode nonlin6aire aux 

moindres carr6s a r6cemment 6tk appliqu6e par de nombreux auteurs, a 1’6tude des matb- 
riaux polym6riques. Nagler a 6tudi6 une m6thode modifi6e propos6e par Blizzard et 
Jirka et  a conch que la m6thode n’est pas utilisable par suite du temps excessif necks- 
saire au computer. On a montr6 que les difficult& rencontrees par Nagler sont inh6reiites 
B la m6thode de Blizzard et  Jirka, mais non pas B la m6thode de base elle-mbme. Trois 
&apes sont soulignkes qui permettent de minimiser le temps nkc6ssaire au computer e t  
un r6sum6 d’applications favorables est donn6. 

Zusammenfassung 
Eine als nichtlineares Verfahren der kleinsten Quadrate bekannte Auswertmethode 

wurde neuerdings von mehreren Autoren auf die Untersuchung polymerer Stoffe ange- 
wendet. Nagler benutzte eine modifizierte, von Blizzard und Jirka vorgeschlagene 
Methode und kam zu dem Schluss, dass die Methode wegen der erforderlichen exzessiveri 
Computerzeit praktisch nicht verweiidbar ist. Es wird gezeigt, dass die von Nagler 
festgestellten Schwierigkeiten zwar fur die Methode von Blizzard und Jirka, nicht aber 
fur die ihr zugruiide liegeiide Methode spezifisch siird. Drei Schritte werdeii aufgezeigt, 
um die Computerzeit klein zu halten, und eine Zusammenstelluiig erfolgreioher Anwen- 
dungen wird gegeben. 
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